Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1362541.v1

ABSTRACT

The SARS-CoV-2 B.1.1.529 lineage, Omicron variant, was first detected in November 2021 and carries 32 amino acid mutations in the spike protein (15 in RBD) and exhibits significant escape of neutralizing antibodies targeting the parental SARS-CoV-2 virus. Here, we performed a high-resolution multiplex (16-plex) surrogate virus neutralization assay covering all major SARS-CoV-2 variants and pre-emergent ACE2-binding sarbecoviruses against 20 different human serum panels from infected, vaccinated and hybrid immune individuals which had vaccine-breakthrough infections or infection followed by vaccination. Among all sarbecoviruses tested, we observed 1.1 to 4.7-, 2.3 to 10.3- and 0.7 to 33.3-fold reduction in neutralization activities to SARS-CoV-2 Beta, Omicron and SARS-CoV-1, respectively. Among the SARS-CoV-2 related sarbecoviruses, it is found that the genetically more distant bat RaTG13 and pangolin GX-P5L sarbecoviruses had less neutralization escape than Omicron. Our data suggest that the SARS-CoV-2 variants emerged from the changed immune landscape of human populations are more potent in escaping neutralizing antibodies, from infection or vaccination, than pre-emergent sarbecoviruses naturally evolved in animal populations with no or less immune selection pressure.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.28.21261295

ABSTRACT

Objectives Highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns (VOCs) with mutations in the spike protein are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. Methods We conducted a multi-centre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared the clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. Results Of 218 individuals with B.1.617.2 infection, 84 had received a mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and 4 received a non-mRNA. Despite significantly older age in the vaccine breakthrough group, the odds of severe COVID-19 requiring oxygen supplementation was significantly lower following vaccination (adjusted odds ratio 0.07 95%CI: 0.015-0.335, p=0.001). PCR cycle threshold (Ct) values were similar between both vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients, however, these titers were significantly lower against B.1.617.2 as compared with the wildtype vaccine strain. Conclusion The mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of COVID-19 pandemic.


Subject(s)
Coronavirus Infections , COVID-19 , Breakthrough Pain
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-432867.v1

ABSTRACT

PurposeCOVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), has a wide disease spectrum ranging from asymptomatic to severe. While it is widely accepted that specific humoral immune responses are critical in controlling the infection, the relationship between the humoral immune response and disease severity is currently unclear.MethodsUsing a flow cytometry-based assay to detect specific antibodies against full length S protein, we compared the antibody levels between patients from different severity groups. We also analysed the cytokine profiles of patients from different severity groups by multiplex microbead-based immunoassay.ResultsWe found an association between specific IgM, IgA and IgG against the spike protein and disease severity. By comparing the ratio of Th1 IgG1 and IgG3 to Th2 IgG2 and IgG4, we observed that all severity groups exhibited a ratio that was skewed towards a stronger Th1 response over Th2 response. In addition to the strong Th1 response, patients with severe disease also developed a Th2 response, as exemplified by the smaller ratio of IgG1 and IgG3 over IgG2 and IgG4 and the smaller Th1/Th2 cytokine ratios, compared to patients with mild disease severity. ConclusionThe results suggest that acute severity or disease resolution is associated with a specific immunological phenotype. A smaller skew towards a Th1 response over Th2 response, during infection, may contribute to disease progression, while a greater skew towards a Th1 response over Th2 response may contribute to a better disease outcome. This may suggest potential therapeutic approaches to COVID-19 disease management.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.10.430668

ABSTRACT

Key immune signatures of SARS-CoV-2 infection may associate with either adverse immune reactions (severity) or simply an ongoing anti-viral response (temporality); how immune signatures contribute to severe manifestations and/or temporal progression of disease and whether longer disease duration correlates with severity remain unknown. Patient blood was comprehensively immunophenotyped via mass cytometry and multiplex cytokine arrays, leading to the identification of 327 basic subsets that were further stratified into more than 5000 immunotypes and correlated with 28 plasma cytokines. Low-density neutrophil abundance was closely correlated with hepatocyte growth factor levels, which in turn correlated with disease severity. Deep analysis also revealed additional players, namely conventional type 2 dendritic cells, natural killer T cells, plasmablasts and CD16+ monocytes, that can influence COVID-19 severity independent of temporal progression. Herein, we provide interactive network analysis and data visualization tools to facilitate data mining and hypothesis generation for elucidating COVID-19 pathogenesis.


Subject(s)
COVID-19
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3741264

ABSTRACT

Background: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. Methods: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth’s logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. Findings: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades ‘O’ were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. Interpretation: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.Funding Statement: This study was funded by grants from the Singapore National Medical Research Council (COVID19RF- 001, COVID19RF2-0001, COVID19RF-007, and COVID19RF-60) and Biomedical Research Council (project number H20/04/g1/006).Declaration of Interests: No conflicts of interest declared.Ethics Approval Statement: The epidemiological investigation was conducted under the Infectious Diseases Act (Singapore). Study protocols were approved by ethics committees of the National Healthcare Group and SingHealth. Written informed consent was obtained from participants for clinical data and biological sample collection as part of the PROTECT study (2012/00917; 2018/3045). A waiver of informed consent for retrospective data collection only was granted for individuals admitted to the National Centre of Infectious Diseases (2020/01122). Healthy donor samples were collected under study numbers 2017/2806 and NUS IRB 04-140.


Subject(s)
COVID-19 , Hypoxia , Inflammation , Vitamin B 6 Deficiency
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.16.20232835

ABSTRACT

The rapid rise of coronavirus disease 2019 patients who suffer from vascular events after their initial recovery is expected to lead to a worldwide shift in disease burden. We aim to investigate the impact of COVID-19 on the pathophysiological state of blood vessels in convalescent patients. Here, convalescent COVID-19 patients with or without preexisting conditions (i.e. hypertension, diabetes, hyperlipidemia) were compared to non-COVID-19 patients with matched cardiovascular risk factors or healthy participants. Convalescent patients had elevated circulating endothelial cells (CECs), and those with underlying cardiovascular risk had more pronounced endothelial activation hallmarks (ICAM1, P-selectin or CX3CL1) expressed by CECs. Multiplex microbead-based immunoassays revealed some levels of cytokine production sustained from acute infection to recovery phase. Several proinflammatory and activated T lymphocyte-associated cytokines correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Finally, the activation markers detected on CECs mapped to the counter receptors (i.e. ITGAL, SELPLG, and CX3CR1) found primarily on CD8+ T cells and natural killer cells, suggesting that activated endothelial cells could be targeted by cytotoxic effector cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=69 SRC="FIGDIR/small/20232835v1_ufig1.gif" ALT="Figure 1"> View larger version (19K): org.highwire.dtl.DTLVardef@11f094borg.highwire.dtl.DTLVardef@9b458forg.highwire.dtl.DTLVardef@1f3bceeorg.highwire.dtl.DTLVardef@f8d229_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Acute Disease , Diabetes Mellitus , Hypertension , COVID-19 , Hyperlipidemias
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3713507

ABSTRACT

Early detection of infections is crucial to limit the spread of coronavirus 2019 disease (COVID-19). Here, we developed a flow cytometry-based assay to detect SARS-CoV-2 Spike protein (S protein) antibodies in COVID-19 patients. The assay detected specific IgM and IgG in COVID-19 patients and also the acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response was significantly higher at a later stage of the infection. Furthermore, asymptomatic COVID-19 patients also developed specific IgM and IgG, with IgG1 as the most dominant subclass. Although the antibody levels were lower in asymptomatic infections, the assay was highly sensitive and detected 97% of asymptomatic infections. These findings demonstrated that the assay could be used for serological analysis of symptomatic patients, and also as a sensitive tool to detect asymptomatic infections, which may go undetected.Funding: Biomedical Research Council (BMRC), the A*ccelerate GAP-funded project (ACCL/19-GAP064-R20H-H) from Agency of Science, Technology and Research (A*STAR), and National Medical Research Council (NMRC) COVID-19 Research fund (COVID19RF-001, COVID-19RF-007, COVID-19RF-60).Conflict of Interest: The authors declare no competing interests.Ethical Approval: The study design and protocols for COVID-19, recovered SARS and seasonal human CoV patient cohorts were approved by National Healthcare Group (NHG) Domain Specific Review Board (DSRB) and performed, following ethical guidelines in the approved studies 2012/00917, 2020/00091 and 2020/00076 respectively. Healthy donor samples were collected in accordance with approved studies 2017/2806 and NUS IRB 04-140. Written informed consent was obtained from participants in accordance with the Declaration of Helsinki for Human Research.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.332544

ABSTRACT

The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralize against the G614 variant. In this report, profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralization profiles against both S protein variants, albeit waning neutralizing antibody capacity at the later phase of infection. These findings provide further insights towards the validity of current immune-based interventions.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.17.20197004

ABSTRACT

Background Self-sampling for SARS-CoV-2 would significantly raise testing capacity and reduce healthcare worker (HCW) exposure to infectious droplets personal, and protective equipment (PPE) use. Methods We conducted a diagnostic accuracy study where subjects with a confirmed diagnosis of COVID-19 (n=401) and healthy volunteers (n=100) were asked to self-swab from their oropharynx and mid-turbinate (OPMT), and self-collect saliva. The results of these samples were compared to an OPMT performed by a HCW in the same patient at the same session. Results In subjects confirmed to have COVID-19, the detection rates of the HCW-swab, self-swab, saliva, and combined self-swab plus saliva samples were 82.8%, 75.1%, 74.3% and 86.5% respectively. All samples obtained from healthy volunteers were tested negative. Compared to HCW-swab, the detection rates of a self-swab sample and saliva sample were inferior by 8.7% (95%CI: 2.4% to 15.0%, p=0.006) and 9.5% (95%CI: 3.1% to 15.8%, p=0.003) respectively. The combined detection rate of self-swab and saliva had a higher detection rate of 2.7% (95%CI: -2.6% to 8.0%, p=0.321). The sensitivity of both the self-collection methods are higher when the Ct value of the HCW swab is less than 30. The negative correctness of both the self-swab and saliva testing was 100% (95% CI 96.4% to 100%). Conclusion Our study provides evidence that detection rates of self-collected OPMT swab and saliva samples were inferior to a HCW swab, but they could still be useful testing tools in the appropriate clinical settings.


Subject(s)
COVID-19
12.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-21854.v1

ABSTRACT

Background To determine the utility of chest radiography (CXR) for assessing and prognosticating COVID-19 disease with an objective radiographic scoring system.Methods A multicenter, prospective study was conducted, forty patients were included. Seventy-eight CXR’s were performed on the first derivation cohort of twenty patients with COVID-19 (median age 47.5 years, 10 females and four with comorbidities) admitted between 22 January 2020 and 1 February 2020. Each CXR was scored by three radiologists in consensus and graded on a 72-point COVID-19 Radiographic Score (CRS). This was correlated with supplemental oxygen requirement, C-reactive protein (CRP), lactate dehydrogenase (LDH) and lymphocyte count. To validate our findings, the parameters of another validation cohort of twenty patients with 65 CXRs were analysed.Results In the derivation cohort, seven patients needed supplemental oxygen and one was intubated for mechanical ventilation with no death. The maximum CRS was significantly different between patients on and not on supplemental oxygen (p=<.001). There was strong correlation between maximum CRS and lowest oxygen saturation (r= -.849), maximum CRP (r= .832) and maximum LDH (r= .873). These findings were consistent in the validation cohort. An increment of 2 points in CRS had an accuracy of 0.938 with 100.0% sensitivity (95% CI 100.0-100.0) and 83.3% (95% CI 65.1-100.0) specificity in predicting supplemental oxygen requirement.Conclusion Using an objective scoring system (CRS), the degree of abnormalities on CXR correlates closely with known markers of disease severity. CRS may further be applied to predict patients who require oxygen supplementation during the course of their disease.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.30.015461

ABSTRACT

The ongoing SARS-CoV-2 pandemic demands rapid identification of immunogenic targets for the design of efficient vaccines and serological detection tools. In this report, using pools of overlapping linear peptides and functional assays, we present two immunodominant regions on the spike glycoprotein that were highly recognized by neutralizing antibodies in the sera of COVID-19 convalescent patients. One is highly specific to SARS-CoV-2, and the other is a potential pan-coronavirus target.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL